首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10933篇
  免费   1895篇
  国内免费   163篇
化学   10299篇
晶体学   49篇
力学   26篇
综合类   2篇
数学   29篇
物理学   2586篇
  2024年   16篇
  2023年   160篇
  2022年   207篇
  2021年   327篇
  2020年   491篇
  2019年   451篇
  2018年   267篇
  2017年   239篇
  2016年   645篇
  2015年   679篇
  2014年   633篇
  2013年   825篇
  2012年   676篇
  2011年   690篇
  2010年   617篇
  2009年   735篇
  2008年   753篇
  2007年   862篇
  2006年   774篇
  2005年   563篇
  2004年   498篇
  2003年   509篇
  2002年   232篇
  2001年   186篇
  2000年   119篇
  1999年   129篇
  1998年   96篇
  1997年   114篇
  1996年   106篇
  1995年   75篇
  1994年   59篇
  1993年   34篇
  1992年   33篇
  1991年   22篇
  1990年   12篇
  1989年   17篇
  1988年   15篇
  1987年   13篇
  1986年   17篇
  1985年   13篇
  1984年   17篇
  1983年   6篇
  1982年   12篇
  1981年   10篇
  1980年   7篇
  1978年   9篇
  1977年   8篇
  1976年   4篇
  1974年   2篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Nanocarbon oxides have been proved to possess great peroxidase‐like activity, catalyzing the oxidation of many peroxidase substrates, such as 3,3′,5,5′‐tetramethylbenzidine (TMB) and o‐phenylenediamine dihydrochloride (OPD), accompanied by a significant color change. This chromogenic reaction is widely used to detect glucose and occult blood. The chromogenic reaction was intensively investigated with density functional theory and molecular‐level insights into the nature of peroxidase‐like activity were gained. A radical mechanism was unraveled and the carboxyl groups of nanocarbon oxides were identified as the reactive sites. Aromatic domains connected with the carboxyl groups were critical to the peroxidase‐like activity.  相似文献   
52.
The stereochemical outcome of reactions of chiral nucleophilic trisubstituted acetonide radicals with electron‐deficient alkenes is dictated by a delicate balance between destabilizing non‐bonding interactions and stabilizing hydrogen‐bonding between substituents on the α and β carbons.  相似文献   
53.
195Pt NMR chemical shifts of octahedral Pt(IV) complexes with general formula [Pt(NO3)n(OH)6 ? n]2?, [Pt(NO3)n(OH2)6 ? n]4 ? n (n = 1–6), and [Pt(NO3)6 ? n ? m(OH)m(OH2)n]?2 + n ? m formed by dissolution of platinic acid, H2[Pt(OH)6], in aqueous nitric acid solutions are calculated employing density functional theory methods. Particularly, the gauge‐including atomic orbitals (GIAO)‐PBE0/segmented all‐electron relativistically contracted–zeroth‐order regular approximation (SARC–ZORA)(Pt) ∪ 6–31G(d,p)(E)/Polarizable Continuum Model computational protocol performs the best. Excellent second‐order polynomial plots of δcalcd(195Pt) versus δexptl(195Pt) chemical shifts and δcalcd(195Pt) versus the natural atomic charge QPt are obtained. Despite of neglecting relativistic and spin orbit effects the good agreement of the calculated δ 195Pt chemical shifts with experimental values is probably because of the fact that the contribution of relativistic and spin orbit effects to computed σiso 195Pt magnetic shielding of Pt(IV) coordination compounds is effectively cancelled in the computed δ 195Pt chemical shifts, because the relativistic corrections are expected to be similar in the complexes and the proper reference standard used. To probe the counter‐ion effects on the 195Pt NMR chemical shifts of the anionic [Pt(NO3)n(OH)6 ? n]2? and cationic [Pt(NO3)n(OH2)6 ? n]4 ? n (n = 0–3) complexes we calculated the 195Pt NMR chemical shifts of the neutral (PyH)2[Pt(NO3)n(OH)6 ? n] (n = 1–6; PyH = pyridinium cation, C5H5NH+) and [Pt(NO3)n(H2O)6 ? n](NO3)4 ? n (n = 0–3) complexes. Counter‐anion effects are very important for the accurate prediction of the 195Pt NMR chemical shifts of the cationic [Pt(NO3)n(OH2)6 ? n]4 ? n complexes, while counter‐cation effects are less important for the anionic [Pt(NO3)n(OH)6 ? n]2? complexes. The simple computational protocol is easily implemented even by synthetic chemists in platinum coordination chemistry that dispose limited software availability, or locally existing routines and knowhow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
54.
55.
The electrochemistry, photophysics, and electrochemically generated chemiluminescence (ECL) of a family of polysulfurated dendrimers with a pyrene core have been thoroughly investigated and complemented by theoretical calculations. The redox and luminescence properties of dendrimers are dependent on the generation number. From low to higher generation it is both easier to reduce and oxidize them and the emission efficiency increases along the family, with respect to the polysulfurated pyrene core. The analysis of such data evidences that the formation of the singlet excited state by cation–anion annihilation is an energy‐deficient process and, thus, the ECL has been justified through the triplet–triplet annihilation pathway. The study of the dynamics of the ECL emission was achieved both experimentally and theoretically by molecular mechanics and quantum chemical calculations. It has allowed rationalization of a possible mechanism and the experimental dependence of the transient ECL on the dendrimer generation. The theoretically calculated Marcus electron‐transfer rate constant compares very well with that obtained by the finite element simulation of the whole ECL mechanism. This highlights the role played by the thioether dendrons in modulating the redox and photophysical properties, responsible for the occurrence and dynamics of the electron transfer involved in the ECL. Thus, the combination of experimental and computational results allows understanding of the dendrimer size dependence of the ECL transient signal as a result of factors affecting the annihilation electron transfer.  相似文献   
56.
57.
The electronic and adsorption properties of the pristine, Al-, Ga-, and Ge-doped BN nanotubes interacted with 5-fluorouracil molecule (5-FU) were theoretically investigated in the gas phase using the B3LYP density functional theory (DFT) calculations. It was found that the adsorption behavior of 5FU molecule on the pristine (8, 0) and (5, 5) BNNTs are electrostatic in nature. In contrast, the 5FU molecule (O-side) implies strong adsorption on the metal-doped BNNTs. Our results indicate that the Ga-doped presents high sensitivity and strong adsorption with the 5-FU molecule than the Al- and Ge-doped BNNTs. Therefore, it can be introduced as a carrier for drug delivery applications.  相似文献   
58.
The double “pancake” bonding in the dimers of the six‐membered heterocycles 1,3‐dithia‐2,4,6‐triazine ( 4 ) and 1,3‐dithia‐2,4‐diazine ( 16 ) were investigated by means of high‐level quantum chemical calculations (B3LYP and CCSD(T)). It was found that the S–S dimers, 20 a and 27 , are not the most stable isomers, but the dimers showing short S?N ( 21 a ) and S?C ( 25 , 28 ) bonds. An investigation of the 5‐phenyl‐1,3‐dithia‐2,4,6‐triazine ( 4 b ) yields that the syn dimer with two S?S bonds (2.57 Å) is the most stable one. In this dimer, the phenyl groups are placed on top of each other. The additional dispersion energy of the phenyl rings causes a stabilization of the syn‐S–S (C2v‐like) isomer. As a result, two weak albeit relevant single S?S bonds (2.57 Å) are predicted. These findings contradict the recently published concept of double “pancake” bonding in the dimer 4 b 2.  相似文献   
59.
Elaborate chemical design is of utmost importance in order to slow down the relaxation dynamics in single‐molecule magnets (SMMs) and hence improve their potential applications. Much interest was devoted to the study of distinct relaxation processes related to the different crystal fields of crystallographically independent lanthanide ions. However, the assignment of the relaxation processes to specific metal sites remains a challenging task. To address this challenge, a new asymmetric Dy2 SMM displaying a well‐separated two‐step relaxation process with the anisotropic centers in fine‐tuned local environments was elaborately designed. For the first time a one‐to‐one relationship between the metal sites and the relaxation processes was evidenced. This work sheds light on complex multiple relaxation and may direct the rational design of lanthanide SMMs with enhanced magnetic properties.  相似文献   
60.
Three new triterpenoids with an unprecedented 6/6/6/6‐fused tetracyclic carbon skeleton, montecrinanes A–C ( 1 – 3 ), were isolated from the root bark of Celastrus vulcanicola, along with known D:B‐friedobaccharanes ( 4 – 6 ), and lupane‐type triterpenes ( 7 – 12 ). The stereostructures of the new metabolites were elucidated based on spectroscopic (1D and 2D NMR) and spectrometric (HR‐EIMS and HR‐ESIMS) techniques. Their absolute configurations were determined by both NMR spectroscopy, with (R)‐(?)‐α‐methoxyphenylacetic acid as a chiral derivatizing agent, and biogenetic considerations. Biogenetic pathways for montecrinane and D:B‐friedobaccharane skeletons were proposed and studied by DFT methods. The theoretical results support the energetic feasibility of the putative biogenetic pathways, in which the 1,2‐methyl shift from the secondary baccharenyl cation represents a novel and key reaction step for a new montecrinane skeleton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号